Radiographic Imaging Equipment (RADR 2309 3A1)

INSTRUCTOR CONTACT INFORMATION
Instructor: Brenda A. Barrow, M.Ed., R.T.
Email: babarrow@lit.edu
Office Phone: 409-241-9829
Office Location: 232 Multipurpose Center
Office Hours: office hours posted outside door and in Starfish

CREDIT
3 Semester Credit Hours (3 hours lecture, 0 hours lab)

MODE OF INSTRUCTION
This course will be taught face-to-face using a multimedia format. Lectures, demonstrations, lab experiments and discussion will be utilized to enhance the cognitive learning process. Students will have outside reading and out of class homework assignments periodically in the semester. The student will be required to utilize both reading and listening skills.

PREREQUISITE/CO-REQUISITE:
RADR 1313 Principles of Radiographic Imaging I

COURSE DESCRIPTION
Equipment and physics of x-ray production. Includes basic x-ray circuits. Also examines the relationship of conventional and digital equipment components to the imaging process.

COURSE OBJECTIVES
Upon completion of this course, the student will be able to:

1. Differentiate between conventional and digital equipment.
2. Explain the physics of x-ray production.
3. Describe basic x-ray circuits.
4. Relate conventional and digital equipment components to the imaging process.

REQUIRED TEXTBOOK AND MATERIALS
- A computer with internet access. The computer must be able to run current programs and platforms such as Windows 10 and the internet must be reliable and robust. The course has an online component and will move to a fully online format if necessary. The computer must have a camera and microphone for online conferencing.
Course Requirements:
- There will be three (3) major tests
- The final exam will be comprehensive
- BlackBoard will be utilized for all quiz/homework assignments. If a student misses an assignment it may not be made up. Quiz/homework grades will be averaged for one (1) test grade. Students will be allowed to drop their lowest quiz grade at the end of the semester. If more than one quiz is missed a zero (0) will be given. This is already configured in Black Board gradebook.
- There will be a ten (10) point reduction for make-up exams.

COURSE EVALUATION
Final grades will be calculated according to the following criteria:
- Major Exams (3) 60% (20%)
- Comprehensive Final 20%
- Homework and Quizzes 20%

GRADING SCALE
A=93-100
B=84-92
C=77-83
D=60-76
F=0-59
LIT does not use +/- grading scales
* STUDENTS MUST HAVE A 77 OR ABOVE AVERAGE TO PASS THIS COURSE!

ATTENDANCE POLICY and COURSE POLICIES:
1. No food, drinks, or use of tobacco products in class.
2. Phones, headphones, and any other electronic devices must be turned off while in class.
3. Recording devices may be used except during test reviews and when otherwise stated by the instructor.
4. Lap top computers, I-pad... may be used to take notes during class but may not be used to “surf” the internet, look-up answers, nor anything not directly related to note taking.
5. It shall be considered a breach of academic integrity (cheating) to use or possess on your body any of the following devices during any examination unless it is required for that examination and approved by the instructor: Cell phone, smart watch/watch
phone, laptop, tablet, electronic communication devices (including optical), and earphones connected to or used as electronic communication devices.

- This is a violation of the Radiologic Technology Student Handbook and will result in dismissal from the program.

Students with special needs and/or medical emergencies or situations should communicate with their instructor regarding individual exceptions/provisions. It is the student’s responsibility to communicate such needs to the instructor.

6. Do not bring children to class.

7. BlackBoard will be utilized for homework assignments. Quizzes will be administered in class. If a student misses an assignment it may not be made up. Quiz/homework grades will be averaged for one (1) test grade. Students will be allowed to drop their lowest quiz/homework grade at the end of the semester. If more than one assignment is missed a zero (0) will be given. This is already configured in Black Board gradebook.

8. Attendance Policy: Class attendance is important to ensure that a student receives the knowledge and skills necessary to be successful in the Radiologic Technology program. Students are expected to be in class on time. If a student is tardy they may enter only if they do so quietly.

When it becomes necessary to miss a session, it is the responsibility of the student to contact the instructor and to inquire about assignments. I will not distribute the PowerPoints missed. The student must get the notes from a classmate. If a major test is missed, the test will be administered at the first day the student returns to class or at a time designated by the instructor. There will be a ten (10) point reduction for make-up exams.

To encourage class attendance, students that miss two (2) or more class sessions in a unit will have a five (5) point reduction on that test. Students who are tardy four (4) times will equal one (1) absence.

9. If a student misses an assignment for any reason it may not be made up. Quiz/homework grades will be averaged for one (1) test grade. Students will be allowed to drop their lowest quiz/homework grade at the end of the semester. If more than one quiz is missed a zero (0) will be given. This is already configured in Black Board gradebook.

10. Any student who fails to pass a Unit test will be required to attend mandatory tutorial. This may be done before or after class or at lunch break. The tutorial may be individual or in a group session. There will be remediation assignments in Clover Learning Student Plan. These must be successfully completed or the student will not be allowed to take the next unit exam.
DROP POLICY
If you wish to drop a course, you are responsible for initiating and completing the drop process by the specified drop date as listed on the Academic Calendar. If you stop coming to class and fail to drop the course, you will earn an “F” in the course.

STUDENT EXPECTED TIME REQUIREMENT
For every hour in class (or unit of credit), students should expect to spend at least two to three hours per week studying and completing assignments. For a 3-credit-hour class, students should prepare to allocate approximately six to nine hours per week outside of class in a 16-week session OR approximately twelve to eighteen hours in an 8-week session. Online/Hybrid students should expect to spend at least as much time in this course as in the traditional, face-to-face class.

RADR 2309 Equipment - COURSE CALENDAR: Tues/Thurs 10:15 – 11:30 All dates are tentative

<table>
<thead>
<tr>
<th>DATE</th>
<th>TOPIC/BUSHONG CH</th>
<th>READINGS CARLTON-REFERENCE</th>
<th>ASSIGNMENTS (Due on this Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 16</td>
<td>Course Intro. & CH 1 Concepts of Radiologic Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan 18</td>
<td>CH. 2 Basic Physics primer</td>
<td>Ch 2 Carlton</td>
<td></td>
</tr>
<tr>
<td>Jan 23</td>
<td>CH 3 The Structure of Matter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan 25</td>
<td>CH 3 cont.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan 30</td>
<td>CH 4 Electromagnetic Energy & Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb 1</td>
<td>TEST I CH 1 – 4</td>
<td></td>
<td>TEST I CH 1 – 4</td>
</tr>
<tr>
<td>Feb 6</td>
<td>Go over test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb 8</td>
<td>CH 5 Electrostatics</td>
<td>Ch 3 Carlton</td>
<td></td>
</tr>
<tr>
<td>Feb 13</td>
<td>CH 5 Electrodynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb 15</td>
<td>CH 5 Circuits & Magnetism</td>
<td>Ch 4 Carlton</td>
<td></td>
</tr>
<tr>
<td>Feb 20</td>
<td>CH 5 Electromagnetism, Generators, & Motors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb 22</td>
<td>CH 5 Transformers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb 27</td>
<td>CH 6 The X-Ray Imaging System</td>
<td>Ch 5 Carlton</td>
<td></td>
</tr>
<tr>
<td>Feb 29</td>
<td>CH 6 cont. & Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar 5</td>
<td>TEST II CH 5 & 6</td>
<td></td>
<td>TEST II CH 5 & 6</td>
</tr>
<tr>
<td>Mar 7</td>
<td>Go over test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar12&14</td>
<td>SPRING BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar 19</td>
<td>CH 7 The X-Ray Tube</td>
<td>Ch 6 Carlton</td>
<td></td>
</tr>
<tr>
<td>Mar 21</td>
<td>CH 7 cont.</td>
<td>Ch 36 Carlton</td>
<td></td>
</tr>
<tr>
<td>Mar 26</td>
<td>CH 8 X-Ray Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar 28</td>
<td>CH 8 cont.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr 2</td>
<td>CH 9 X-Ray Emission</td>
<td>Ch 8 Carlton</td>
<td></td>
</tr>
<tr>
<td>Apr 4</td>
<td>No class/RADR 2401 Comp Exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr 9</td>
<td>CH 11 Imaging Science (Computers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr 11</td>
<td>Exposure Systems & Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr 16</td>
<td>TEST III CH 7 – 9 & 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr 18</td>
<td>Go over test & Non-Medical Uses of Radiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr 23</td>
<td>Prep Bowl review ALL CLASSES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr 25</td>
<td>FINAL EXAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr 30</td>
<td>Go over test & Pathology presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 2</td>
<td>Pathology presentations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACADEMIC DISHONESTY

Students found to be committing academic dishonesty (cheating, plagiarism, or collusion) may receive disciplinary action. Students need to familiarize themselves with the institution’s Academic Dishonesty Policy available in the Student Catalog & Handbook at http://catalog_lit.edu/content.php?catoid=3&navoid=80#academic-dishonesty.

ADDITIONAL COURSE POLICIES/INFORMATION

COURSE OUTLINE:

At the completion of each chapter the student should be able to...

Ch. 1 Essential Concepts of Radiologic Science

A. Describe the characteristics of matter and energy
 1. Mass/weight
 2. Building blocks

B. Identify various forms of energy
 1. Potential
 2. Kinetic
 3. Thermal
 4. Nuclear

C. Define electromagnetic radiation and ionizing radiation

D. Discuss the two main categories of radiation
 1. Natural environmental
 2. Man-made

E. List and define units of radiation and radioactivity
 1. Roentgen(R)/Air Kerma
 2. Rad/Gray
 3. Rem/Sievert
 4. Curie (Ci)

II. Ch. 2 Basic Physics Primer

A. Discuss the origin of scientific systems of measurement

B. List the three systems of measurement
 1. Mass
 2. Length
3. Time

C. Identify the nine categories of mechanics
 1. Velocity and acceleration
 2. Force
 3. Weight and momentum
 4. Work and power
 5. Kinetic energy and potential energy

D. Calculate problems using fractions, decimals, exponents and algebraic equations

E. Identify scientific notation and associated prefixes

III. Ch. 3 Structure of Matter
 A. Identify the structure of the atom
 1. Proton
 2. Neutron
 3. Electron
 B. Describe electron shells and instability within atomic structure
 1. Electron arrangement
 2. Ionization
 C. Discuss radioactivity and the characteristics of alpha and beta particles
 D. Explain the difference between particulate and electromagnetic radiation
 1. Alpha and beta particles
 2. X-ray and gamma rays (photons)

IV. Ch. 4 Electromagnetic Energy
 A. Identify the properties of photons
 1. Frequency and wavelength
 2. Velocity and amplitude
 B. Explain the inverse square law
 C. Define frequency, wavelength and velocity
 D. Discuss the relationship between wavelength, frequency and velocity
 1. Wave equation
 2. Electromagnetic wave equation
 E. Describe the electromagnetic spectrum
 1. Light
 2. Radiofrequency
 3. Ionizing radiation

V. Ch. 5 Electricity, Magnetism and Electromagnetism
 A. Define electrification and give examples
 1. Contact
 2. Friction
 3. Induction
 B. List the laws of electrostatics
 1. Electrostatic force
 2. Like Charges
 3. Conductors
 4. Surface shape
5. Negative charges

C. Identify units of electric current, electric potential and electric power

D. Describe electric circuits
 1. Series
 2. Parallel
 3. Symbols

E. Identify the interactions between matter and magnetic fields

F. Discuss the laws of magnetism
 1. Like poles repel opposites attract
 2. Two poles
 3. Force of Attraction/Repulsion

G. Identify the laws of electromagnetic induction
 1. Solenoid
 2. Electromagnet
 3. Faraday’s Law

VI. Ch. 6 The X-ray Imaging System

A. Identify the components of the operating console
 1. Timers
 2. mAs selectors
 3. kVp selectors
 4. AEC

B. Explain the operation of the high voltage generator including filament transformers and rectifiers
 1. Autotransformers
 2. Rectification

C. Differentiate between single-phase, three-phase and high frequency power

D. Identify the voltage ripple in various high voltage generators

E. Discuss the importance of voltage ripple to x-ray quantity and quality

F. Define the power rating of an imaging system
 1. Single phase
 2. Three phase/High frequency

VII. Ch. 7 The X-ray Tube

A. Describe the general design of an x-ray tube

B. List the external components that house and protect the x-ray tube
 1. Ceiling support
 2. Floor to ceiling support
 3. C-arm support
 4. Housing
 5. Enclosure

C. Discuss the cathode and filament currents
 1. Focusing cup
 2. Thermionic emission

D. Describe the parts of the anode and the induction motor
 1. Target
2. Stator
3. Rotor
4. Electromagnetic induction

E. Define the line focus principle and the heel effect

F. Identify three causes of x-ray tube failure
 1. Filament vaporization
 2. Failure to warm up tube
 3. High temp due to over exposure

G. Explain and interpret x-ray tube rating charts

VIII. Ch. 8 X-ray Production
 A. Discuss the interactions between electrons and the anode
 B. Identify Characteristic and Bremsstrahlung x-rays
 C. Describe the x-ray emission spectrum
 D. Explain how mAs, kVp, added filtration, target material and voltage ripple affect the x-ray emission spectrum
 1. mAs
 2. kVp
 3. Filtration
 4. Anode material
 5. Machine phase

IX. Ch. 9 X-ray Emission
 A. Define radiation quantity and its relation to x-ray intensity
 B. List and discuss factors that affect the intensity/quantity of the x-ray beam
 1. Inverse Square law
 2. Exposure Maintenance formula
 3. kVp formula
 C. Explain x-ray quality and penetrability
 1. penetrability
 2. HVL
 3. filtration

X. Ch. 11 Imaging Science
 A. Discuss history of computers
 B. Discuss hardware devices
 1. Input devices
 2. Output devices
 C. Discuss types of software
 1. System software
 2. Application software
 D. Discuss computer usage in the radiology department
 1. DICOM
 2. PACS
 3. Teleradiology
 E. Compare and contrast analog and digital radiography systems

XI. NON-MEDICAL USES OF X-RAY
1. Discuss the use of x-ray in art
2. Discuss the use of x-ray in forensics
3. Describe historical uses of x-ray

TECHNICAL REQUIREMENTS
The latest technical requirements, including hardware, compatible browsers, operating systems, etc. can be online at https://lit.edu/online-learning/online-learning-minimum-computer-requirements. A functional broadband internet connection, such as DSL, cable, or WiFi is necessary to maximize the use of online technology and resources.

DISABILITIES STATEMENT
The Americans with Disabilities Act of 1990 and Section 504 of the Rehabilitation Act of 1973 are federal anti-discrimination statutes that provide comprehensive civil rights for persons with disabilities. LIT provides reasonable accommodations as defined in the Rehabilitation Act of 1973, Section 504 and the Americans with Disabilities Act of 1990, to students with a diagnosed disability. The Special Populations Office is located in the Eagles’ Nest Room 129 and helps foster a supportive and inclusive educational environment by maintaining partnerships with faculty and staff, as well as promoting awareness among all members of the Lamar Institute of Technology community. If you believe you have a disability requiring an accommodation, please contact the Special Populations Coordinator at (409)-951-5708 or email specialpopulations@lit.edu. You may also visit the online resource at [Special Populations - Lamar Institute of Technology (lit.edu)](https://lit.edu/special-populations).

STUDENT CODE OF CONDUCT STATEMENT
It is the responsibility of all registered Lamar Institute of Technology students to access, read, understand and abide by all published policies, regulations, and procedures listed in the LIT Catalog and Student Handbook. The LIT Catalog and Student Handbook may be accessed at www.lit.edu. Please note that the online version of the LIT Catalog and Student Handbook supersedes all other versions of the same document.

STARFISH
LIT utilizes an early alert system called Starfish. Throughout the semester, you may receive emails from Starfish regarding your course grades, attendance, or academic performance. Faculty members record student attendance, raise flags and kudos to express concern or give praise, and you can make an appointment with faculty and staff all through the Starfish home page. You can also login to Blackboard or MyLIT and click on the Starfish link to view academic alerts and detailed information. It is the responsibility of the student to pay attention to these emails and information in Starfish and consider taking the recommended actions. Starfish is used to help you be a successful student at LIT.