### AC Circuits (CETT 1405)



Credit: 4 semester credit hours (3 hours lecture, 4 hours lab)

### Prerequisite: CETT 1403

### **Course Description**

A study of the fundamentals of alternating current including series and parallel AC circuits, phasors, capacitive and inductive networks, transformers, and resonance.

### **Required Textbook and Materials**

- 1. <u>Electronics Fundamentals</u> 8<sup>th</sup> edition by Thomas L. Floyd ISBN-13: 9780135072950
- 2. Notebook
- 3. Calculator
- 4. Pencil

### **Course Objectives**

Upon completion of this course, the student will be able to:

- 1. Demonstrate appropriate use of test equipment.
- 2. Identify various sources of electricity in AC circuits
- 3. Analyze AC circuits using appropriate mathematical formulas.
- 4. Troubleshoot various AC circuits using schematic diagrams

# **Course Outline**

Chapter 8 Introduction to Alternating Current and Voltage

- 8-1 The Sinusoidal Waveform
- 8-2 Sinusoidal Voltage Sources
- 8-3 Voltage and Current Values of Sine Waves

8-4 Angular Measurement of a Sine Wave

- 8-5 The Sine Wave Formula
- 8-6 Analysis of AC Circuits
- 8-7 Superimposed DC and AC Voltages
- 8-8 Nonsinusoidal Waveforms
- 8-9 The Oscilloscope

Chapter 9 Capacitors

9-1 The Basic Capacitor

- 9-2 Types of Capacitors
- 9-3 Series Capacitors
- 9-4 Parallel Capacitors
- 9-5 Capacitors in DC Circuits
- 9-6 Capacitors in AC Circuits
- 9-7 Capacitor Applications

Chapter 10 RC Circuits

10-1 Sinusoidal Response of RC

Circuits

10-2 Impedance and Phase Angle of Series

**RC** Circuits

- 10-3 Analysis of Series RC Circuits
- 10-4 Impedance and Phase Angle of Parallel RC Circuits
- 10-5 Analysis of Parallel RC Circuits

## CETT 1405

Course Syllabus

10-6 Analysis of Series-Parallel RC Circuits

- 10-7 Power in RC Circuits
- 10-8 Basic Applications
- 10-9 Troubleshooting

Chapter 11 Inductors

- 11-1 The Basic Inductor
- 11-2 Types of Inductors
- 11-3 Series and Parallel Inductors
- 11-4 Inductors in DC Circuits
- 11-5 Inductors in AC Circuits
- 11-6 Inductor Applications

Chapter 12 RL Circuits

12-1 Sinusoidal Response of RL Circuits 12-2 Impedance and Phase Angle (

12-2 Impedance and Phase Angle of Series

RL Circuits 12-3 Analysis of Series RL Circuits

## **Grade Scale**

| 90 - 100 | А |
|----------|---|
| 80 - 89  | В |
| 70 - 79  | С |
| 60 - 69  | D |
| 0 – 59   | F |

### 12-4 Impedance and Phase Angle of Parallel RL Circuits

- 12-5 Analysis of Parallel RL Circuits
- 12-6 Analysis of Series-Parallel RL

Circuits

- 12-7 Power in RL Circuits
- 12-8 Basic Applications
- 12-9 Troubleshooting

Chapter 13 RLC Circuits and Resonance

13-1 Impedance and Phase Angle of Series

**RLC** Circuits

- 13-2 Analysis of Series RLC Circuits
- 13-3 Series Resonance
- 13-4 Series Resonant Filters
- 13-5 Parallel RLC Circuits
- 13-6 Parallel Resonance
- 13-7 Parallel Resonant Filters
- 13-8 Applications

# **Course Requirements**

- 1. Describe the basic structure and characteristics of capacitors and inductors
- 2. Analyze series and parallel capacitor circuits
- 3. Describe how a capacitor operates in an AC circuit and in a DC circuit
- 4. Analyze series and parallel RC and RL circuits
- 5. Analyze series and parallel inductor circuits
- 6. Describe how an inductor operates in an AC circuit and in a DC circuit
- 7. Discuss basic capacitor, inductor, RL and RC applications
- 8. Analyze series and parallel RLC circuits
- 9. Analyze RLC circuits for resonance
- 10. Use a multimeter to measure voltage, current and resistance in a circuit
- 11. Use oscilloscope to measure voltage in a circuit

#### **CETT 1405**

Course Syllabus

12. Troubleshoot circuits using multimeters, oscilloscopes and appropriate mathematical formulas

### **Disabilities Statement**

The Americans with Disabilities Act of 1992 and Section 504 of the Rehabilitation Act of 1973 are federal anti-discrimination statutes that provide comprehensive civil rights for persons with disabilities. Among other things, these statutes require that all students with documented disabilities be guaranteed a learning environment that provides for reasonable accommodations for their disabilities. If you believe you have a disability requiring an accommodation, please contact the Special Populations Coordinator at (409) 880-1737 or visit the online resource:

http://www.lit.edu/depts/stuserv/special/defaults.aspx

### **Student Code of Conduct Statement**

It is the responsibility of all registered Lamar Institute of Technology students to access, read, understand and abide by all published policies, regulations, and procedures listed in the *LIT Catalog and Student Handbook*. The *LIT Catalog and Student Handbook* may be accessed at <u>www.lit.edu</u> or obtained in print upon request at the Student Services Office.

| Week | Торіс                           | Reference   |
|------|---------------------------------|-------------|
| 1    | Intro to AC Current and Voltage | Chapter 8   |
|      | • Lecture                       |             |
|      | Lab: Chapter Exercises          |             |
| 2    | AC Current and Voltage          | Chapter 8   |
|      | • Lecture                       |             |
|      | • Lab: Chapter Exercises        |             |
| 3    | AC Current and Voltage          | Chapter 8   |
|      | • Lecture                       |             |
|      | Lab: Chapter Exercises          |             |
|      | • Exam One                      |             |
| 4    | Capacitors                      | Chapter 9   |
|      | • Lecture                       |             |
|      | Lab: Chapter Exercises          |             |
| 5    | Capacitors                      | Chapter 9   |
|      | • Lecture                       |             |
|      | • Lab: Chapter Exercises        |             |
| 6    | Capacitors                      | Chapters 9  |
|      | • Lecture                       |             |
|      | • Lab: Chapter Exercises        |             |
|      | • Exam Two                      |             |
| 7    | RC Circuits                     | Chapters 10 |
|      | • Lecture                       |             |

### **Course Schedule**

| Week | Торіс                    | Reference   |
|------|--------------------------|-------------|
|      | • Lab: Chapter Exercises |             |
| 8    | RC Circuits              | Chapter 10  |
|      | • Lecture                |             |
|      | Lab: Chapter Exercises   |             |
| 9    | RC Circuits              | Chapter 10  |
|      | • Lecture                |             |
|      | Lab: Chapter Exercises   |             |
|      | Exam Three               |             |
| 10   | Inductors                | Chapter 11  |
|      | • Lecture                |             |
|      | Lab: Chapter Exercises   |             |
| 11   | Inductors                | Chapter 11  |
|      | • Lecture                |             |
|      | Lab: Chapter Exercises   |             |
| 12   | RL Circuits              | Chapter 12  |
|      | • Lecture                |             |
|      | Lab: Chapter Exercises   |             |
| 13   | RL Circuits              | Chapter 12  |
|      | • Lecture                |             |
|      | Lab: Chapter Exercises   |             |
|      | • Exam Four              |             |
| 14   | RLC Circuits             | Chapter 13  |
|      | • Lecture                |             |
|      | Lab: Chapter Exercises   |             |
| 15   | RLC Circuits             | Chapters 13 |
|      | • Lecture                |             |
|      | Lab: Chapter Exercises   |             |
| 16   | RLC Circuits             | Chapters 13 |
|      | • Lecture                |             |
|      | Lab: Chapter Exercises   |             |
|      | Exam Five                |             |