Applied Physics (SCIT 1418)

Credit: 4 semester credit hours (3 hours lecture, 2 hours lab)

Prerequisite: MATH 1332

Course Description
Introduction to physics for industrial applications including vectors, motion, mechanics, simple machines, matter, heat, and thermodynamics.

Required Textbook and Materials
2. Three ring binder.
3. Tabbed dividers.
4. Scientific calculator.
5. Pens or pencils.

Course Objectives
Upon completion of this course, the student will be able to:
1. Define the basic terminology as related to applied physics
2. Use appropriate measuring devices to analyze systems
3. Apply the relationships of length, mass, and time
4. Demonstrate problem-solving techniques related to physics principles including: vectors, motion, mechanics, simple machines, matter, heat, and thermodynamics
5. Demonstrate laboratory skills related to physics principles.

Course Outline
A. Math for Physics Review
 1. Standards of Measure
 a. British system
 b. Metric system
 2. Scientific Notation
 3. Significant figures and Accuracy
 4. Precision
 5. Conversions
 a. British-British
 b. Metric-Metric
 c. Metric-British
 6. Area and Volume
 7. Calculations with Significant Digits
 8. Basic Algebraic Calculations
 9. Problem Solving Method
B. Force and Motion
 1. Force
 2. Newton’s Laws of Motion
 a. Law of Inertia
 b. Law of Acceleration
 1. Friction
 2. Gravity and Weight
 3. Law of Action and Reaction
 C. Momentum
 1. Momentum
 2. Collisions
 a. Elastic Collisions
 b. Inelastic Collisions
 D. Basic Right Triangle Trigonometry
 1. Right Triangles

Approved 1/2014
SCIT 1418
Course Syllabus

2. Trigonometric Functions
 a. Sine
 b. Cosine
 c. Tangent
3. Using Trigonometric Functions
 a. Determine an Unknown Side
 b. Determine an Unknown Angle
E. Vectors
 1. Vectors and Scalars
 2. Components of a Vector
 3. Addition of Vectors
F. Concurrent and Parallel Forces
 1. Forces in Two Dimensions
 2. Concurrent Forces in Equilibrium
 3. Torque
 4. Parallel Forces
 5. Center of Gravity
G. Simple Machines
 1. Machines and Energy Transfer
 2. Lever
 3. Wheel and Axle
 4. Pulley
 5. Inclined Plane
 6. Screw
 7. Wedge
 8. Compound Machines
H. Transferring Rotational Motion

1. Gears
2. Pulleys Connected With a Belt
I. Matter
 1. Properties of Matter
 2. Properties of Solids
 3. Properties of Liquids
 4. Properties of Gases
 5. Density and Specific Gravity
J. Fluids
 1. Hydrostatic Pressure
 2. Pascal’s Principle
 3. Air Pressure
 4. Buoyancy
 5. Fluid Flow
K. Temperature and Heat Transfer
 1. Temperature
 2. Heat
 3. Heat Transfer
 4. Specific Heat
 5. Calorimetry
 6. Change of Phase
L. Gas Laws
 1. Charles’ Law
 2. Boyle’s Law
 3. Gay-Lussac’s Law
 4. Combined Gas Law

Grade Scale
90 – 100 A
80 – 89 B
70 – 79 C
60 – 69 D
0 – 59 F

Course Evaluation
Final grades will be calculated according to the following criteria:
1. 3 or 4 Unit Tests 50%
2. Comprehensive Final Exam 20%
3. Homework, Class Binder 10%
4. Laboratory 20%

Course Requirements
1. Semester binder containing all handouts, homework, tests, and labs.
2. Laboratory projects.
3. Chapter homework.
Course Policies

1. Each unit has assigned homework problems. All homework is due on the testing day for that unit and must be turned in inside a binder containing dividers as assigned by the instructor. All calculations must be shown to receive credit. Completing only odd problems and skipping even problems will result in a grade of ZERO (0).

2. Makeup work, including labs and exams, may only be made up at the instructor’s discretion. It is the responsibility of the student to contact the instructor as soon as possible to arrange for makeup work. All makeup work must be completed within one week of the original due date.

3. There is a 20 point penalty for work turned in less than one week late. There is a 50 point penalty for work turned in more than one week late, but less than two weeks late. Work turned in more than two weeks late will not be accepted.

4. Students will not be automatically dropped from the class due to poor attendance or grades. Discontinuing class attendance without properly submitting a drop request will result in a failing grade (F).

5. Students are expected to stay for the full duration of the lab period or until all data is taken, calculations are performed and the lab assignment is turned in. Reports are to be neat and complete. DO NOT USE RED INK. Corrections should be made by a single line through the incorrect data and the correction entered next to the old data. Calculations may be done in pencil, but data should be recorded in ink.

6. Safety rules must be abided by at all times. Any student who continually breaks the safety rules will be removed from the class to insure the safety of the other students in the class.

7. All electronic devices need to be turned off unless prior approval has been given by instructor to have them set to vibrate. (Permission will only be given in emergency situations.)

8. Children are not allowed in either the lecture class or laboratory at any time.

9. No food, drinks, or use of tobacco products in class.

10. Attendance in class is vital to understanding physics. If an absence is unavoidable, arrange with the instructor to attend another session of the class. If you are absent, it is your responsibility to obtain copies of at least two other student’s notes and rewrite them in your notebook. If you need further assistance, please sit up an appointment with the instructor for a tutoring session. Excessive unexcused absences (per instructor’s discretion) will result in a ten point deduction from the final semester grade. Attendance in lab is mandatory. Missed labs may be made up within one week without penalty at the instructor’s discretion. Labs not made up within two weeks will
result in a grade of zero (0). A lab that is one day to one week late will incur a 20 point penalty. A lab that is more than one week, but less than two weeks late will incur a 50 point penalty. At the end of the semester, three missed labs (grades of 0) will result in an automatic failing grade (F) for the course.

Disabilities Statement

The Americans with Disabilities Act of 1992 and Section 504 of the Rehabilitation Act of 1973 are federal anti-discrimination statutes that provide comprehensive civil rights for persons with disabilities. Among other things, these statutes require that all students with documented disabilities be guaranteed a learning environment that provides for reasonable accommodations for their disabilities. If you believe you have a disability requiring an accommodation, please contact the Special Populations Coordinator at (409) 880-1737 or visit the office in Student Services, Cecil Beeson Building.

Course Schedule

<table>
<thead>
<tr>
<th>Week of</th>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Chapter 1: The Physics Tool Kit</td>
<td>pp. 1-49</td>
</tr>
<tr>
<td>Week 2</td>
<td>Chapter 2: Problem Solving</td>
<td>pp. 50-67</td>
</tr>
<tr>
<td></td>
<td>Chapter 5: Force</td>
<td>pp. 128-147</td>
</tr>
<tr>
<td>Week 3</td>
<td>Chapter 5: Force, continued</td>
<td>pp. 128-147</td>
</tr>
<tr>
<td>Week 4</td>
<td>Chapter 6: Momentum</td>
<td>pp. 148-167</td>
</tr>
<tr>
<td>Week 5</td>
<td>Test 1: Chapters 1, 2, 5, 6</td>
<td>pp. 667-673, 685-687</td>
</tr>
<tr>
<td></td>
<td>Appendix A.5: Right Triangle Trigonometry</td>
<td></td>
</tr>
<tr>
<td>Week 6</td>
<td>Chapter 3: Vectors</td>
<td>pp. 68-97</td>
</tr>
<tr>
<td>Week 7</td>
<td>Chapter 7: Concurrent and Parallel Forces</td>
<td>pp. 168-203</td>
</tr>
<tr>
<td>Week 8</td>
<td>Chapter 7: Concurrent and Parallel Forces</td>
<td>pp. 168-203</td>
</tr>
<tr>
<td></td>
<td>Test 2: Appendix A.5, Chapters 3, 7</td>
<td></td>
</tr>
<tr>
<td>Week 9</td>
<td>Chapter 10: Simple Machines</td>
<td>pp. 266-295</td>
</tr>
<tr>
<td>Week 10</td>
<td>Chapter 9: Rotational Motion</td>
<td>pp. 232-265</td>
</tr>
<tr>
<td>Week 11</td>
<td>Chapter 12: Matter</td>
<td>pp. 308-339</td>
</tr>
<tr>
<td>Week 12</td>
<td>Test 3: Chapters 10, 9, 12</td>
<td>pp. 340-365</td>
</tr>
<tr>
<td></td>
<td>Chapter 13: Fluids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 14: Temperature and Heat Transfer</td>
<td>pp. 366-405</td>
</tr>
<tr>
<td>Week 14</td>
<td>Chapter 14: Temperature and Heat Transfer</td>
<td>pp. 366-405</td>
</tr>
<tr>
<td>Week 15</td>
<td>Chapter 15: Gas Laws</td>
<td>pp. 406-419</td>
</tr>
</tbody>
</table>
*The instructor reserves the right to make adjustments to this schedule as necessary.